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ReCycle: Resilient Training of Large DNNs

using Pipeline Adaptation
Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos, Christos Kozyrakis

- Models Are Becoming Larger Distributed Training is Becoming a Norm
Recent work in language modeling demonstrates. that training |a.rge DNN training frameworks use a combination of Tensor, Pipeline, and
transformer models advances the state of the art in NLP applications. Data parallelism to efficiently scale up to thousands of GPUs
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- Failures Getting Noticeable Techniques in ReCycle
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[1] The Llama 3 Herd of Models. https://arxiv.ora/pdf/2407.21783 Upon fallure, re-route computation from failed
[2] Large Scale Openclip: L/14, H/14 And G/14 Trained On LAION-2B. https://laion.ai/blog/large-openclip/ worker to its functional data—parallel peers. v
[3] OPT: Open Pre-trained Transformer Language Models. https://arxiv.org/abs/2205.01068 (c) Staggered gagzcnilmizer
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(B) ReCycle's Adaptive Schedule
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Hybrid-parallel training with 3 data-parallel pipelines, 4 pipeline stages, and 18 micro-batches per iteration. .
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- Key Takeaway
Stall-Free No Impact on Ensures High Training
Fast Recovery Model Accuracy Throughput in presence
from Failures from Failures and absence of Failures
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