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GPT-4*
3400 GB

MegaScale
1060 GB
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34 GB

Assuming 2 bytes per model parameter

NVIDIA GB200: 380GB
AMD MI325X: 256 GB
Google TPUv6: 32GB

Grew by	≈4 orders of 
magnitude in past 6 years
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ReCycle: Resilient Training of Large DNNs 
using Pipeline Adaptation

Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos, Christos Kozyrakis
Models Are Becoming Larger
Recent work in language modeling demonstrates that training large 
transformer models advances the state of the art in NLP applications. 

However, their compute and memory requirement far outstrips the 
capacity of a single GPU.

Failures Getting Noticeable Techniques in ReCycle

DNN training frameworks use a combination of Tensor, Pipeline, and 
Data parallelism to efficiently scale up to thousands of GPUs.

Key Insight: We leverage inherent functional redundancy and pipeline 
bubbles in Hybrid Parallelism to minimize throughput drop from failures
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(A) Fault Free 1F1B Schedule

Hybrid-parallel training with 3 data-parallel pipelines, 4 pipeline stages, and 18 micro-batches per iteration. 

Working Around Failures Training Throughput

Key Takeaway
No Impact on

Model Accuracy
from Failures

Ensures High Training 
Throughput in presence 
and absence of Failures

Stall-Free 
Fast Recovery
from Failures

Reports about the impact of failures in training large models: 

“During a 54-day snapshot period of pre-training, we experienced a total of 466 job 
interruptions….Approximately 78% of the unexpected interruptions are attributed to 
confirmed hardware issues, such as GPU or host component failures…”
                   - Llama Team @ META[1]

“This is a particularly annoying problem to handle as if one GPU has an issue, the 
synchronized nature of distributed training means that all GPUs get stuck.”
                                 - LAION Team[2]

“Estimated 100+ host restarts due to hardware failures over the course of 2 
months...178,000 GPU hours of wasted time due to various malfunctions”
                                     - OPT 175B Team[3]

(B) ReCycle’s Adaptive Schedule 
when W1_2 fails
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Performance

Resiliency

Using all GPUs
for training

Reserving some GPUs
as hot spares ReCycle

No Overhead in
Fault-Free Case

Constant Overhead; Spares 
remain idle in Fault-Free Case

Training stalls when
a GPU fails

Hot spare ensures continual 
training in presence of faults
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Trade-off in Distributed Training
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Distributed Training is Becoming a Norm
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As training scales up and extends over longer durations, the likelihood 
of encountering failures also rises.

[1] The Llama 3 Herd of Models. https://arxiv.org/pdf/2407.21783
[2] Large Scale Openclip: L/14, H/14 And G/14 Trained On LAION-2B. https://laion.ai/blog/large-openclip/
[3] OPT: Open Pre-trained Transformer Language Models. https://arxiv.org/abs/2205.01068

How data is split over GPUs

Data Parallelism Model Parallelism Data + Model Parallelism

Data Parallelism Model Parallelism Data + Model Parallelism

How model weights are split over GPUs
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Bamboo Oobleck ReCycle

(c) GPT-3 6.7B

(b) GPT-3 350M

(a) GCP Trace
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(c) Staggered Optimizer

(a) Adaptive Pipelining
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(b) DeCoupled BackProp

Upon failure, re-route computation from failed 
worker to its functional data-parallel peers.
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