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Models are growing
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Al companies
are using
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accelerators
to train these
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Failures are common

“During a 54-day snapshot period of pre-training, we
experienced a total of 466 job interruptions....Approximately
/8% of the unexpected interruptions are attributed to confirmed
hardware issues, such as GPU or host component failures...”

- Llama Team @ Metal'l

Similar reports at Google, Microsoft, Amazon, Alibaba,
ByteDance, LAION,...

[1] The Llama 3 Herd of Models. https://arxiv.org/pdf/2407.21783
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Failures have large impact

“This is a particularly annoying problem to handle as
the synchronized nature of distributed training

1)

means that
- LAION Teaml'!

“Estimated 100+ host restarts due to hardware failures over the
course of 2 months... 178,000 GPU hours of wasted time due

to various malfunctions”
- OPT Teaml2!

[1] Large Scale Openclip: L/14, H/14 And G/14 Trained On LAION-2B. https://laion.ai/blog/large- ooencho/
[2] OPT: Open Pre-trained Transformer Language Models. https://arxiv. orq/abs/2205 01068
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Practitioners can prioritize either...

Performance or Resiliency




Practitioners can prioritize either...
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ReCycle prioritizes both

Performance

Using all GPUs
for training

v
X

No Overhead in
Fault-Free Case

Training stalls when
a GPU fails

All or Nothing

Reserving some GPUs
as hot spares

X
v/

Constant Overhead
in Fault-Free Case

Hot spare

All or Nothing

ReCycle

v/
v/

No Overhead in
Fault-Free Case

without relying on hot spares

Graceful Degradation




: Working Around Failures

Multiple copies of model parameters
exist across data-parallel peers

4-Way Pipeline Parallelism ——
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: Working Around Failures

Multiple copies of model parameters Bubbles are intervals within an iteration
exist across data-parallel peers where worker idles due to unmet forward
and backward operation dependencies

4-Way Pipeline Parallelism ——

I Forward and Bubbles
- - — S Backward operations in TF1B

Optimizer
Step

- - - Stage 2
@_, I Stage 3 I

Each worker idle for 30% of the iteration in above 1F1B schedule

«— 3-Way Data Parallelism
=
=
=

Functional data-parallel peers compensate for a failed worker
by utilizing existing pipeline gaps to process re-routed microbatches
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: Working Around Failures

4-Way Pipeline Parallelism —

«— 3-Way Data Parallelism

+ Stall-free training until

at least 1 data-parallel

peer is functional

WO_3
+ Parallel recovery using
all functional data-
W
- parallel peers
+ No impact on model
W,

- convergence
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But what about performance?



I Forward and Backward
operations
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Forward and Backward
operations
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and Backward
operations

I Re-Routed
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Can we make Adaptive Pipelining
performant?



Background: Backprop

In conventional backprop, each pipeline stage computes two
gradients per layer:

1. Input Gradient (VI), used to propagate errors back through
the network

2. Weight Gradient (VI¥), used to update model parameters

VI

l

Pipeline Pipeline Pipeline
Stagel —1 Stage | Stagel +1

l

vi VW
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Background: Backprop

Dependency: Stage I's gradient computation depends only on
the input gradient VI from stage I + 1's

Challenge: These computations are tightly coupled, length-ing
computation dependency across pipeline stages

VI VI VI
Pipeline Pipeline Pipeline
Stagel —1 Stage | Stagel +1

l l

vi VW vi VW
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Decoupled Backprop: Filling unused bubbles

Splitting conventional backprop in two distinct phases: Bjpyut
and By eigne allows greater scheduling flexibility.

In Biput Phase, the input gradients are computed independently,
allowing error to be propagated to previous stage without
waiting for weight gradient

VI VI VI
Pipeline Pipeline Pipeline
Stage I —1 Stage I Stage I +1
VI VI VI

18

Binput Phase



Decoupled Backprop: Filling unused bubbles

Weight gradient VIV is still computed, but it is performed
independently of input gradient VI

This decoupling allows two gradient computation to be
performed in separate phases, without waiting on each other

VI VI VI
Pipeline Pipeline Pipeline
Stage I —1 Stage I Stage I +1
%4 ViwW %4

Byeignt Phase 19



I Forward and Backward I:I Bubbles I Re-Routed and Backward
operations in TF1B operations
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But what about bubbles at the start!
How can we leverage them?



Staggered Optimizer: Accessing more bubbles

Optimizer step for different pipeline stages operate independently
of one another, but are currently coupled together

I I Forward and Backward I:I Bubbles I Optimizer Step
in 1F1B
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Staggered Optimizer: Accessing more bubbles

We decouple them and adjust the timing of the optimizer step,
shifting bubbles from next iteration’s start into current iteration

I I Forward and Backward I:I Bubbles I Optimizer Step
in 1F1B
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Bubbles from iteration I + 1
made accessible in iteration I by
shifting timing of optimizer step

WO 3| Stage3
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Data Parallel Pipeline 0
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Adaptive Pipelining
=

Decoupled BackProp
=

Staggered Optimizer

Zero Overhead
despite W, ,failure



Re CyCle PI’OtOtype More Details above them

in the paper
( : Training Job Configuration Fault Tolerance \ /
Offline Phase | Threshold f |
5 . Uses Dynamic Programming and
5 Planner Mixed Integer Linear Programming
o to implement ReCycle Techniques
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Retrieve Adaptive =

Adaptive J  Coordinator
Schedule Schedule
Store
Adapt job to
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Evaluation

* Implemented on DeepSpeed + Megatron-LM

* Evaluated using 24 NVIDIA A100 GPUs connected via 80Gbps

interconnect to train GPT-3 3.5B model using DP=6,
PP=4,and TP=1

—GPUs Availability
24
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ReCycle and Oobleck ensure
stall-free training without
relying on hot spares
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Throughput (samples/sec)
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Comparison vs Oobleck [SOSP'23]

DeepSpeed Oobleck ReCycle

ReCycle and Oobleck ensure
stall-free training without
relying on hot spares

ReCycle and Oobleck introduce
no overhead in fault-free case
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10.8 samples/sec
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ReCycle and Oobleck ensure

ReCycle and Oobleck introduce
no overhead in fault-free case

ReCycle delivers 1.2x
higher throughput over Oobleck
due to reduced reconfiguration
overhead
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Comparison vs Fault-Scaled

Operational
Fault-Scaled _ Fault-Free y Resources

Throughput Throughput

Resources in
Fault-Free Case

Extrapolates throughput as a linear function of operational resources
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Comparison vs Fault-Scaled
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ReCycle enables Performant and
Distributed Training

Adaptive Pipelining reroutes computation from failed workers
to functioning data-parallel peers, ensuring

Decoupled BackProp and Staggered Optimizer exploits
pipeline bubbles to maintain high training throughput in
presence of failures

ReCycle maintains synchronous training semantics, ensuring
model convergence is unaffected
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