ReCycle: Resilient Training of Large DNNs Using Pipeline Adaptation

Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos, Christos Kozyrakis

Models are growing

Al companies are using 10,000s of accelerators to train these massive models

Failures are common

"During a 54-day snapshot period of pre-training, we experienced a total of **466 job interruptions**....Approximately 78% of the unexpected interruptions are attributed to confirmed hardware issues, such as GPU or host component failures..."

- Llama Team @ Meta^[1]

Similar reports at Google, Microsoft, Amazon, Alibaba, ByteDance, LAION,...

Failures have large impact

"This is a particularly annoying problem to handle as **if one GPU has an issue**, the synchronized nature of distributed training means that **all GPUs get stuck**."

- LAION Team^[1]

"Estimated 100+ host restarts due to hardware failures over the course of 2 months... 178,000 GPU hours of wasted time due to various malfunctions"

- OPT Team^[2]

Practitioners can **prioritize** either...

Practitioners can **prioritize** either...

Performance

Resiliency

Using all GPUs for training

No Overhead in Fault-Free Case

Training stalls when a GPU fails

All or Nothing

Reserving some GPUs as hot spares

Constant Overhead in Fault-Free Case

Hot spare ensures stall-free training

All or Nothing

ReCycle prioritizes both

Performance

Resiliency

Using all GPUs for training

No Overhead in Fault-Free Case

Training stalls when a GPU fails

All or Nothing

Reserving some GPUs as hot spares

Constant Overhead in Fault-Free Case

Hot spare ensures stall-free training

All or Nothing

ReCycle

No Overhead in Fault-Free Case

Ensures stall-free training without relying on hot spares

Graceful Degradation

Adaptive Pipelining: Working Around Failures

Multiple copies of model parameters exist across data-parallel peers

Adaptive Pipelining: Working Around Failures

Multiple copies of model parameters exist across data-parallel peers

Bubbles are intervals within an iteration where worker idles due to unmet forward and backward operation dependencies

Each worker idle for 30% of the iteration in above 1F1B schedule

Functional data-parallel peers compensate for a failed worker by utilizing existing pipeline gaps to process re-routed microbatches

Adaptive Pipelining: Working Around Failures

- + Stall-free training until at least 1 data-parallel peer is functional
- + Parallel recovery using all functional dataparallel peers
- + No impact on model convergence

But what about performance?

Fault-Free Schedule

Fault-Free Schedule

Re-Routed Forward and Backward

Bubbles

Can we make Adaptive Pipelining performant?

Background: Backprop

In conventional backprop, each pipeline stage computes two gradients per layer:

- 1. Input Gradient (∇I), used to propagate errors back through the network
- 2. Weight Gradient (∇W), used to update model parameters

Background: Backprop

Dependency: Stage I's gradient computation depends only on the input gradient ∇I from stage I+1's

Challenge: These computations are tightly coupled, length-ing computation dependency across pipeline stages

Decoupled Backprop: Filling unused bubbles

Splitting conventional backprop in two distinct phases: B_{Input} and B_{Weight} allows greater scheduling flexibility.

In B_{Input} phase, the input gradients are computed independently, allowing error to be propagated to previous stage without waiting for weight gradient

Decoupled Backprop: Filling unused bubbles

Weight gradient ∇W is still computed, but it is performed independently of input gradient ∇I

This decoupling allows two gradient computation to be performed in separate phases, without waiting on each other

Adaptive Schedule with Decoupled Backprop when $W_{1,2}$ fails

when $W_{1,2}$ fails

But what about bubbles at the start! How can we leverage them?

Staggered Optimizer: Accessing more bubbles

Optimizer step for different pipeline stages operate independently of one another, but are currently coupled together

Staggered Optimizer: Accessing more bubbles

We decouple them and adjust the timing of the optimizer step, shifting bubbles from next iteration's start into current iteration

Adaptive Schedule + Decoupled Backprop + Staggered Optimizer when W_{1 2} fails

Fault-Free Schedule

Adaptive Pipelining Decoupled BackProp Staggered Optimizer Zero Overhead despite W_{1 2} failure

ReCycle Prototype

More Details above them in the paper

Uses Dynamic Programming and Mixed Integer Linear Programming to implement ReCycle Techniques

Coordinator retrieves precomputed adaptive schedule from store and instructs executors to follow new schedule

Evaluation

- Implemented on DeepSpeed + Megatron-LM
- Evaluated using 24 NVIDIA A100 GPUs connected via 80Gbps interconnect to train GPT-3 3.5B model using DP=6, PP=4, and TP=1

Comparison vs Oobleck [SOSP'23]

ReCycle and Oobleck ensure stall-free training without relying on hot spares

Comparison vs Oobleck [SOSP'23]

ReCycle and Oobleck ensure stall-free training without relying on hot spares

ReCycle and Oobleck introduce no overhead in fault-free case

Comparison vs Oobleck [SOSP'23]

ReCycle and Oobleck ensure stall-free training without relying on hot spares

ReCycle and Oobleck introduce no overhead in fault-free case

ReCycle delivers 1.2x
higher throughput over Oobleck
due to reduced reconfiguration
overhead

Comparison vs Fault-Scaled

Extrapolates throughput as a linear function of operational resources

Comparison vs Fault-Scaled

ReCycle enables Performant <u>and</u> Resilient Distributed Training

Adaptive Pipelining reroutes computation from failed workers to functioning data-parallel peers, ensuring **stall-free training**

Decoupled BackProp and Staggered Optimizer exploits pipeline bubbles to maintain **high training throughput** in presence of failures

ReCycle maintains **synchronous training semantics**, ensuring model convergence is unaffected